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Abstract: The concept of being able to urinate in a cup and screen for colorectal cancer
(CRC) is fascinating to the public at large. Here, a simple and label-free urine test based on
surface-enhanced Raman spectroscopy (SERS) was employed for CRC detection. Significant
spectral differences among normal, stages I-II, and stages III-IV CRC urines were observed.
Using discriminant function analysis, the diagnostic sensitivities of 95.8%, 80.9%, and 84.3%
for classification of normal, stages I-II, and stages III-IV CRC were achieved in training model,
indicating the great promise of urine SERS as a rapid, convenient and noninvasive method for
CRC staging detection.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Worldwide, colorectal cancer (CRC) has become the third cause of cancer incidence and the second
cause of cancer mortality, with about 1.8 million new CRC cases and 881,000 deaths occurred in
2018 [1]. The cancer staging (I, II, III, and IV) closely correlates with prognosis and is the most
significant predictor of the survival in patients with CRC. The 5-year relative survival rate for CRC
patients with stage I or II disease are 91% and 82%, respectively. However, 5-year survival rate
declines to 12% for stage IV disease [2]. So early diagnosis plays a significant role in improving
therapeutic efficacy and survival rate for CRC patients. Currently, the routine approaches for CRC
detection are the fecal occult blood test (FOBT) and the colonoscopy. However, these methods
have certain inadequacies [3]. For example, the sensitivity and specificity of FOBT are lower,
particularly for early stage patients who usually do not bleed. The procedures of colonoscopy are
complex, time-consuming, expensive, invasive and uncomfortable for patients, resulting in poor
compliance rates. Accordingly, there is a urgent need to develop a rapid, convenient, noninvasive
and accurate test to promote the CRC detection.

Surface-enhanced Raman spectroscopy (SERS), which is based on inelastic scattering light, is
a rapid, noninvasive and ultra-sensitive bioanalytical technique [4,5]. When the biomolecules are
adsorbed onto the gold or silver nanoparticles surface, the Raman signals of the biomolecules
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will be dramatically amplified to 11-15 orders of magnitude, yielding rich chemical fingerprint
information of biomolecules, such as DNA, RNA, protein and lipid [6–9]. Recently, SERS
has attracted increasing interest in biomedical research and is emerging as a potentially useful
clinical adjunct in cancer diagnosis, capable of identifying the subtle changes associated with
cancer progression in biological samples, such as tissue, cell, blood, urine, and saliva [5,10–19].
Specially, for CRC detection, blood SERS was firstly applied to successfully differentiate the
blood from CRC patients and healthy volunteers by our group in 2011 [20]. Subsequently, blood
RNA SERS and blood protein SERS were also employed to detect CRC, and satisfying detection
results were obtained [21,22]. However, it should be pointed out that human urine is a more ideal
medium for cancer detection due to its noninvasive, abundant and facile collection procedure
than blood. Importantly, urine is the product of human metabolism from the blood, which makes
it contains many biological molecules (e.g. DNA, RNA, protein [23–25]) that can timely reflect
human’s health condition. Application of urine SERS for cancer detection has been reported on
prostate cancer [18], breast cancer [26], and esophagus cancer [17] by Mistro’s group, Moisoiu’s
group, and our group. These exploratory efforts demonstrated urine SERS method was extremely
promising for cancer detection. However, these reported researches on urine SERS only focused
on preliminary recognition of cancer group from normal group. There are little studies exploring
further on the feasibility of applying urine SERS for cancer detection at different stages which is
the most important prognostic factor and has high directive value in making therapy plan.
Hence, this study aimed to evaluate the feasibility of applying gold nanoparticles (Au-NPs)

based SERS techniques for label-free analysis of urine samples belonging to normal, early (stages
I-II), and advanced (stages III-IV) colorectal subjects for CRC staging detection. The principal
component analysis and discriminant function analysis (PCA-DFA) multivariate methods were
employed to analyze and discriminate the urine SERS spectra acquired from the three groups. To
the best of our knowledge, this is the first report on urine SERS for CRC detection, especially for
cancer staging detection which is important for clinician to assess the patient’s status and make
optimal therapy decision. This primary study may develop a rapid, convenient and noninvasive
method for CRC detection at different stages.

2. Materials and methods

2.1. Preparation and characterization of Au-NPs

Stable Au colloid was synthesized following the method reported by Grabar’s group [27]. Briefly,
100 mL HAuCl4 solution (1 mM) was brought to a rolling boil with continuous stirring. Then,
10 mL sodium citrate solution (38.8 mM) was brought to the above solution quickly, and the
mixture was kept boiling and stirring for 15 mins until a homogenous sol with a burgundy color
was obtained. The Au colloid was characterized by the transmission electron microscopy and
the ultraviolet-visible absorption spectrum. Before use as SERS substrate, gold colloid was
centrifuged at 12000 rpm for 10 mins. After centrifugation, the supernatant were removed and
the volume ratio of supernatant to sediment is 49:1. The final concentration of gold colloid is
about 8.87 × 1011 /mL.

2.2. Collection and preparation of urine samples

In this study, a total of 116 human urine samples were collected from two subject groups:
one consisted of healthy volunteers (n=53), the other with histopathological diagnosis of
colorectal cancer (n=63). According to the eighth edition of the International Union Against
Cancer/American Joint Committee on Cancer staging system [28], 26 cancers were I-II stages
and 37 cancers were III-IV stages. All cancer subjects were first diagnosed with CRC (without
undergo any drug treatments). All subject groups took part in the examination of colonoscopy.
The detailed information on subjects can be found in Table 1. All urine samples were from the
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Fujian Cancer Hospital (Fuzhou, China), and the research was approved by the ethical committee
in the hospital (No. 2017-070-01). All urine samples were collected based on the same procedure.
Firstly, after 12 hours of overnight fasting, 2 mL urine was obtained from study subjects between
6:30 A.M. and 8:30 A.M. And then, each urine sample was immediately centrifuged at 10000
rpm for 10 mins to remove the impurities (including cell debris) after collection. Before SERS
measurement, 5 µL urine and 5 µL Au colloid were mixed. Then, a drop of this mixture was
pipetted onto an aluminum slide and air-dried for SERS analysis. Three measurements from the
different edge region of the dried sample were taken to obtain each data point. Figure 1 illustrated
the preparation of urine/Au-NPs analyte for SERS measurement and statistic analysis.

Fig. 1. The schematic representation of the measurement and analysis of Au-NPs based
SERS spectra for CRC detection at different cancer stages

Table 1. Clinical information on CRC and healthy subjectsa

CRC patients (n=63) Healthy subjects (n=53)

Age
Mean 51± 7 49± 9

Gender
Male 34 27

Female 29 26

TNM stage
I and II 26 N/A

III and IV 37 N/A

aNote: N/A is the abbreviation for “not applicable”

2.3. SERS spectral measurement

A confocal Raman micro-spectrometer (Renishaw, Great Britain) equipped with a Peltier cooled
charge-coupled device camera (spectral resolution of 2 cm−1) was used for SERS measurement.
Urine SERS spectra were generated by a 785 nm diode laser (about 1.0 mW power) through a
Leica 20×objective and were recorded from 400 to1800 cm−1 with 10 s exposure time. 785 nm



Research Article Vol. 11, No. 12 / 1 December 2020 / Biomedical Optics Express 7112

excitation can efficiently reduce the biological autofluorescence and the scattering background
from surrounding medium or solvent [29], which has been widely applied in SERS analysis for
biological samples in biomedical research [5,16,29]. The Renishaw software package WIRE 3.4
was employed for SERS acquisition and analysis. Prior to SERS measurement, the instrument
response and wavelength position were calibrated by the 520 cm−1 band of the silicon wafer.

2.4. Data processing and analysis

For a better comparison of spectral shapes and relative intensities of the measured SERS bands
among stages III-IV CRC, stages I-II CRC, and healthy urine samples, raw spectral data were
processed using a fifth-order multi-polynomial fitting algorithm [30] to subtract the fluorescence
background. After that, all above spectra were normalized to the integrated area under the curve
range within 400 to 1800 cm−1. After normalizing the spectral area to a value of 1, the spectral
intensity value represents the percentage signals of Raman bands. By this way, the absolute
intensity variations from laser fluctuations and sample concentration inhomogeneity can be
cancelled, which helps comparing the variation in relative compositions and structures between
different urine samples [31]. Ultimately, the processed spectral data were put into the SPSS
statistic software (SPSS Inc., Chicago) for PCA-DFA.

3. Results and discussion

3.1. SERS spectral analysis

SERS is an ultra-sensitive bioanalysis tool resulting in strongly increased Raman signals from
biomolecules attached to nanometer sized metallic surface. In this study, the Au-NPs with a mean
diameter of 43± 6 nm [in Fig. 2(A)] and a maximum absorption peak at 527 nm [in Fig. 2(B)]
were used as SERS substrate. To study the Au-NPs enhancement effect on the urine, drops of
Au-NPs, the urine without Au-NPs, and the 1:1 urine-Au-NPs mixture were pipetted onto an
aluminum slide for SERS analysis under the same measuring condition, respectively. In Fig. 3(A),
line I, II, and III represented the SERS spectrum of urine, the regular Raman spectrum of urine
without Au-NPs, and the background Raman signal of the Au-NPs, respectively. By comparing
between the urine SERS spectrum and regular Raman spectrum, it showed that urine SERS
spectrum owned more intense and sharp peaks than urine regular Raman spectrum, revealing
that many molecular vibration bands have been enhanced remarkably by SERS and there was an
interaction between urine molecules and Au-NPs. One possible explanation for this enhancement
is the significant magnification of the local electromagnetic field from the interspaces between
concentrated Au-NPs (i.e. the so-called ‘‘hot spot’’) [32]. Meanwhile, there were hardly any
background Raman signals (in 400-1800 cm−1 range) from the Au-NPs substrate [line III in
Fig. 3(A)]. Based on excellent enhancement performance, Au-NPs based SERS technique has
been widely used for the cancer detection in current biomedical research field [20,33–35].
Figure 3(B) showed a comparison of the normalized average SERS spectra from 37 stages

III-IV CRC, 26 stages I-II CRC, and 53 healthy urine samples using Au-NPs as SERS substrate,
respectively. The corresponding standard deviations (the shaded areas) displayed that each group
had a relatively good spectral reproducibility within intra-group, assuring a better comparison of
the spectral characteristics among different groups. The average urine SERS spectra of the three
groups exhibited primary characteristic peaks at 495, 527, 640, 683, 725, 828, 889, 1002, 1090,
1130, 1241, 1358, 1426, 1455, 1596, and 1706 cm−1 with the strongest SERS peaks at 725 and
1002 cm−1. The spectral assignments were listed in Table 2, according to the previous researches
[36–40]. The spectra contained most information related to the biomolecules such as amino acids,
urea, uric acid, creatinine, DNA/RNA bases and so on which are the major contents of human
urine. To highlight the spectral differences among the three groups, the difference spectra were
shown in Fig. 3(C). It can be found that CRC urine samples showed higher intensities at 495, 640,
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Fig. 2. (A) The photograph of the Au colloid with a burgundy color and the inserted picture
is the transmission electron microscopy micrograph. (B) The ultraviolet-visible absorption
spectrum of the Au colloid. The maximum absorption peak is localized at 527 nm.

Fig. 3. (A) Spectra taken from the urine and Au-NPs mixture (I), the urine sample without
Au-NPs (II), and Au-NPs enhanced substrate (III) under the same measuring condition. (B)
Comparison of the normalized average SERS spectra from 37 stages III-IV CRC, 26 stages
I-II CRC, and 53 healthy urine samples, respectively. In addition, the standard deviations
are represented by the shaded areas. (C) The difference spectra calculated from the mean
SERS spectra among the three groups. (D) The corresponding histograms of the average
intensities and standard deviations of SERS peaks among the three groups. *p <0.05
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683, 828, 889, 1130, and 1358 cm−1, while lower at 725, 1002, 1090, 1241, 1426, 1455, 1596,
and 1706 cm−1 as compared with healthy samples. In addition, the intensities of SERS peaks at
495, 640, 683, 725, 889, 1090, 1130, 1241, 1455, 1596, and 1706 cm−1 showed linear changes as
cancer staging development (from stages I-II to stages III-IV). Figure 3(D) was the histogram
of the average intensity values of urine SERS peaks with associated standard deviations. The
significantly different peaks among the three groups were identified by one-way analysis of
variance with the definition of p-value (i.e. probability) <0.05. These variations showed the
componential changes of urinary biomolecules with colorectal neoplasia progress. For instance,
the higher spectral intensity of uric acid (at 640 and 1130 cm−1) for the CRC patients indicated
there was an increase of uric acid content relative to the total SERS-active components in CRC
urine, which was in accordance with previous SERS study on urine of prostate cancer [18]. In
addition, previous studies also have reported that the upraised uric acid level was a risk indicator
for the precursor of CRC [41]. The SERS peak at 1002 cm−1 due to the urea [39] showed lower
signal in CRC group, suggesting that the relative amounts of urea were less in colorectal urine,
which is consistent with previous urinary metabonomic study on CRC urine by mass spectrometry
[42]. Similar change in this peak was also found in our previous urine SERS analysis of other
cancer [17]. The band at 828 cm−1, which can be assigned to glutathione, exhibited higher signal
in colorectal patients. Barranco et al. [43] and Qiu et al. [44] also observed a significant increase
of glutathione in CRC tissues and urine, respectively, when compared to the corresponding
normal samples. The possible mechanism for the higher level of glutathione (an antioxidant)
may be indicative of increased oxidative stress in tumor microenvironment. Moreover, the
SERS bands of tryptophan (495, 683, and 1358 cm−1), histidine (1090 cm−1), tyrosine (1241
cm−1), guanine (495 and 1358 cm−1), uracil (1455 cm−1) and DNA/RNA bases (725 and 1241
cm−1), which were significantly up-regulated or down-regulated in cancer group, suggesting
that there were dysregulated metabolism of specific amino acids and nucleic acid bases in CRC
urine. These changes were also discovered by previous researches on urinary metabonomic and
modified nucleoside of CRC patients [44,45]. In particular, for tryptophan metabolism which
is a key regulator of inflammation and immunity, the up-regulated tryptophan metabolism may
be a body’s defense reaction to improve the intestinal epithelial barrier function and reduce the
inflammation response which were usually occurred with the development of CRC [46]. These
above reproducible variations in urine SERS spectra among different cancer stages of CRC
patients and healthy subjects suggested the potential of Au-NPs based SERS method for rapid
and convenient detection of colorectal cancer.

3.2. Multivariate statistical analysis

In order to automatically extract and incorporate all diagnostically significant signatures from
the whole SERS spectra for promoting the efficient detection of colorectal cancer, PCA-DFA
statistical algorithms were executed on the urine SERS spectra by SPSS 15.0 software package
(SPSS Inc. Chicago). Currently, PCA-DFA based statistical method has been widely applied
for cluster analysis of spectral data [47]. As a dimensional-reduction tool, PCA extracted
the meaningful information out of a complex set of spectral data variables, conveying it in a
minimal set of orthogonal variables called principal components (PCs) [48]. Meanwhile, As a
classification method, DFA could maximize the ratio of between-class variance to within-class
variance in a dataset to give the best discrimination between the classes [10,49]. In this study,
116 SERS spectral data (37 stages III-IV CRC, 26 stages I-II CRC, and 53 healthy) were divided
into a training set (32 stages III-IV CRC, 21 stages I-II CRC, and 48 healthy) and a validation
set (5 stages III-IV CRC, 5 stages I-II CRC, and 5 healthy) for statistical analysis. The training
dataset was used to establish a discrimination model for CRC detection and the validation dataset
was used to evaluate the performance of the discrimination model. Firstly, PCA was used to
the multidimensional spectral date (400-1800 cm−1) to generate 47 PCs which can explain
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Table 2. The tentative assignments for urine
SERS spectra

Raman shift (cm−1) Tentative assignmenta

495 Guanine, Tryptophan

527 Nucleic acids, Glutamate

640 Uric acid

683 Tryptophan

725 DNA/RNA bases, Hypoxanthine

828 Glutathione

889 D-Galactosamine, Glycine

1002 Urea

1090 Phosphate, Histidine

1130 Uric acid

1241 Tyrosine, RNA

1358 Guanine, Tryptophan

1426 Creatinine, Valine

1455 Uracil

1596 Alanine, Serine

1706 Creatinine

aAssignments taken from References [36–40].

98.7% of total variance. Next, one-way analysis of variance was conducted on these 47 PCs to
determine the most diagnostically significant PCs for distinguishing among the stages III-IV
CRC, stages I-II CRC, and healthy urine samples using the definition of p<0.05 [50]. As a
result, PC2, PC3, PC8, PC18, PC24, PC25, PC29, and PC43 were calculated to be the most
diagnostically significant PCs, which accounted for 30.63% of the total variance. Figure 4(A)
was the plot of these most diagnostically significant PCs. The plot enabled one to know which
spectral variables are dominating or influencing the PCA-DFA model. It was clear that these
diagnostically significant PCs shared most peaks in the difference spectra in Fig. 3(C), including
495, 640, 683, 725, 828, 889, 1002, 1090, 1130, 1241, 1358, 1426, 1455, 1596, and 1706 cm−1,
which were diagnostically relevant spectral peaks. Then, these most diagnostically significant
PCs were loaded into DFA model for discriminating among the three groups. As a result, two
canonical discriminant functions were calculated [shown in equation (S1)]. In the training stage,
the 32 stages III-IV CRC, 21 stages I-II CRC, and 48 healthy data were backtracked separately
to the DFA model to self-assess the performance of the model. The sensitivities of 95.8%,
80.9%, 84.3%; and the specificities of 94.3%, 95.0%, 94.2%, respectively, were achieved for
classification of normal, stages I-II CRC, and stages III-IV CRC subjects in training model,
showing a relatively satisfactory result. These statistical results were summarized in Table 3.
Then, in the validation stage, double-blind tests were performed on the additional 5 stages
III-IV CRC, 5 stages I-II CRC, and 5 healthy subjects. After adding the additional SERS data
into the above discrimination model, classification results against clinical information were
reached for 5 out of 5 healthy, 4 out of 5 stages I-II CRC and 4 out of 5 stages III-IV CRC. The
diagnostic sensitivities were 100%, 80%, 80%; and the specificities were 90%, 90%, 100%,
respectively. The specific results were shown in Table S1. Figures 4(B) and 4(C) were the
scatter plot of the discrimination scores and the ternary plot of the posterior probabilities for
training dataset and validation dataset, demonstrating the good clustering (with overlap slightly)
of the three distinctive groups achieved by the PCA-DFA diagnostic algorithms. Finally, the
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receiver operating characteristic (ROC) curves [shown in Fig. 4(D)], which were the plots of
tests’ sensitivities versus their false-positive rates for all possible threshold levels [51], were
generated to further assess the performance of PCA-DFA model for CRC detection. The area
under the ROC is positively related with the detection accuracy. Here, areas under the ROC
curves were 0.991, 0.959 and 0.961, respectively, all close to 1 (the maximum value), for the three
groups’ classification, demonstrating relatively ideal discrimination model based on PCA-DFA.
This work indicated the promising potential of urine SERS spectra combined with PCA-DFA as
label-free analytical method for componential analysis of human urine for promoting the rapid,
convenient and noninvasive detection of colorectal cancer at different stages.

Fig. 4. (A) The most diagnostically significant PC loadings plot (p<0.05). (B) Scatter
plot of the discrimination scores and (C) two-dimensional ternary plot of the posterior
probabilities for training dataset and validation dataset. (D) Receiver operating characteristic
(ROC) curves of classification results for the three groups generated from PCA-DFA analysis.
The integration areas under the ROC curves (AUC) are 0.991, 0.959 and 0.961, respectively,
for the three groups’ classification.
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Table 3. Classification results of SERS spectra prediction of the three urine types in training
dataset

Table Urine types
Predicted Groups

Normal group Stages I and II CRC Stages III and IV CRC

Normal 46 1 1

Stage I and II CRC 1 17 3

Stage III and IV CRC 2 3 27

Sensitivity (%) 95.8 (46/48) 80.9 (17/21) 84.3 (27/32)

Specificity (%) 94.3 (50/53) 95.0 (76/80) 94.2 (65/69)

4. Conclusion

In summary, a potential label-free urine test based on SERSwas developed to analyze human urine
for CRC detection at early and advanced stages. This study showed that there were significant
spectral differences among normal, stages I-II CRC, and stages III-IV CRC. Meanwhile, tentative
assignments of the SERS bands indicated dysregulated metabolism of CRC urinary biomolecules,
including urea, specific amino acids, nucleic acid bases and so on. The PCA-DFA algorithms
were employed to classify SERS spectra of the three different urine types with good diagnostic
sensitivities, illustrating the great potential of urine SERS for convenient and noninvasive
detection of colorectal cancer. Our next step will focus on the following two important parts: (1)
collecting urine samples from the below three groups: one consisted of cancer patients with the
use of drugs; one consisted of cancer patients with complications; and one consisted of patients
suffering from other diseases to study the effects from these factors in-depth; (2) collecting more
SERS data from more specimens including colorectal polyps and other types of cancers to further
evaluate the utility of this method for cancer detection.
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